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Abstract

We propose a non-parametric model for pedestrian mo-
tion based on Gaussian Process regression, in which trajec-
tory data are modelled by regressing relative motion against
current position. We show how the underlying model can
be learned in an unsupervised fashion, demonstrating this
on two databases collected from static surveillance cam-
eras. We furthermore exemplify the use of model for predic-
tion, comparing the recently proposed GP-Bayesfilters with
a Monte Carlo method. We illustrate the benefit of this ap-
proach for long term motion prediction where parametric
models such as Kalman Filters would perform poorly.

1. Introduction
Visual surveillance systems often observe scenes

through which pedestrians follow common motion patterns.
In this paper we propose a new scene representation allow-
ing a generative model of motion given a set of observed
trajectories. Previous approaches have used parametric
methods such as spline fitting to model common pedes-
trian paths. However, such models are often too restric-
tive since the trajectories of actors are inherently stochas-
tic, with varying degrees of uncertainty depending on fac-
tors such as physical scene structure, the presence of other
people and the time of day. The use of Gaussian Processes
(GPs) allows us to be explicit about such uncertainties and
to adapt to the various complexities of different scenes and
situations online.

Figure 1 shows a typical scene of interest1. This scene
has a number of entrance and exit points and various routes
between them are commonly used, with some points be-
ing linked by more than one possible route. The aim is to
describe the typical motion patterns using these already ob-
served trajectories with a probabilistic model, which can be
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1Thanks go to Makris et al. for allowing use of the trajectory database
which appeared in [8]

Figure 1. Observed trajectories from a static surveillance camera
courtesy of [8]. Colours indicate cluster membership where clus-
tering has been performed based on matching start and end points.

used for a variety of purposes such as object tracking, se-
mantic labelling of motions and anomaly detection. In this
paper we focus on long term motion prediction as a primary
example application of the model.

Various approaches have been made to model pedes-
trian motion patterns from surveillance video. Makris and
Ellis[7] define routes using linear splines between entry and
exit points in the scene, along with a variance normal to
the spline along each segment to represent the path width.
This computationally efficient model allows the learning of
routes online; however, routes can not handle multiple paths
between points and so increasingly complex scenes must be
broken down into a large number of smaller paths. Also the
one dimensional variance fails to model uncertainty in tar-
get speed along the path. Baiget et al. [2] also model paths
between entry and exit points using slightly more flexible
and compact B-splines, but without any notion of uncer-
tainty. They also outline a method for clustering different
trajectories based on matching similar start and end points.
Johnson and Hogg [5] do not cluster the trajectories ini-
tially, but rather compute a point density estimate of the
joint probability over object positions and instantaneous ve-
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locities using a neural network. Hu et al. [4] parameterise
trajectories at discrete time steps with the distribution over
velocities represented as a chain of Gaussians. After clus-
tering using fuzzy K-means, they demonstrate the ability to
detect abnormal behaviour and perform long term predic-
tion for road traffic. Both applications require that the ob-
ject is tracked from the start of the training data trajectories.
Ali and Shah [1] have used natural crowd flow as a prior
for tracking. They use optical flow (amongst other cues)
to build a ‘flow field’ which describes the general crowd
motion at each point in the image plane. This method is fo-
cused on analysis of only one dominant motion pattern in
the image and is less suitable for scenes with fewer people
where actors are relatively free to move where they wish.

We present a probabilistic approach that bridges the gap
between the full joint pdf over trajectories estimated in
Johnson and Hogg’s method [5] with the efficiency of the
spline based models [2, 7]. At the core of the model is the
use of Gaussian processes to estimate instantaneous veloc-
ity of an actor given its current position. We cluster the
training trajectories based on the associated entry point into
the scene and then build a separate model for each clus-
ter. Therefore instead of estimating the joint probability dis-
tribution over object positions and instantaneous velocities
as in [5], we estimate the conditional distribution over in-
stantaneous velocities given the current position and cluster
membership.

2. Gaussian Process Regression
Here we briefly introduce GP regression [10]. A Gaus-

sian Process is a collection of random variables with any
subset of them having a joint Gaussian distribution. A GP
is fully defined by its mean m(x) and covariance k(x, x′)
functions. A function f being distributed as such is denoted

f ∼ GP(m(x), k(x, x′)). (1)

This distribution over functions will be used as a prior
for inference. It specifies properties of possible functions
through the mean and covariance but often it is assumed
that m(x) = 0 over the whole input space, and the form
of possible functions is determined through the choice of
k(x, x′) and so called hyper-parameters within this covari-
ance function.

If the vector f contains some observed values of the func-
tion f at inputs X and we wish to predict the value of the
function f∗ at a particular input X∗, then we have by the
definition of a GP above[

f
f∗

]
∼ N

(
0,
[
K KT

∗
K∗ k∗∗

])
, (2)

where the following shorthand for the covariance sub-
matrices has been used

K = K(X,X) K∗ = K(X,X∗) k∗∗ = k(X∗, X∗).

The posterior distribution over the predicted value is ob-
tained by conditioning on the observed data

f∗|f ∼ N (K∗K−1f , k∗∗ −K∗K−1KT
∗ ). (3)

This gives the predicted mean value f̄(X∗) along with a
variance V[f∗] describing the uncertainty in this predic-
tion. Generalising, we adopt the notation that for a dataset
D = {X, f} where the inputs X = [x1, ...,xn] have scalar
targets f = [f1, ..., fn], then the posterior process mean
and variance at a test input x∗ are denoted by f̄(x∗) =
GPµ(x∗, D) and V[f∗] = GPΣ(x∗, D).

3. Modelling Clusters of Trajectories
We now focus on the problem of predicting changes in

target position based on its current position and that it is fol-
lowing a previously identified cluster of similar trajectories
(a path) through the scene. Trajectories are represented by
a series of 2D-points xt = [xt, yt]T corresponding to mea-
surements taken at discrete time steps t. We wish to learn
the prediction model f such that

xt = xt−1 + f(xt−1) + nx,t−1, (4)

where n is zero-mean white Gaussian noise. By treating the
change in state ∆xt = xt − xt−1 as the target variable and
considering changes in x and y to be independent, we place
a Gaussian process prior over f ∼ GP (m(x), k(x,x′))
leading to the approximate prediction model

p(∆xt|xt−1,Dx) ≈
N (GPµ(xt−1, Dx),GPΣ(xt−1, Dx)).

(5)

Here the dataset Dx = {(xi, yi),∆xi+1}i=1...n represents
a set of trajectories containing n position and instantaneous
velocity observations in total, and a similar but independent
model is used to predict ∆y using Dy . The mean of the
prior process is taken to be zero which is a reasonable as-
sumption if predictions are only required at test points close
to some input values in the training set. For the covariance
function we use the squared exponential (SE) with an added
bias term given by

k(xi,xj) = σ2
f exp

(
−1

2
||xi − xj ||2Λ

)
+ δijσ

2
n + b. (6)

The SE covariance function enforces smoothness since
points that are close together in the input space have highly
correlated outputs. This is intuitive for the current applica-
tion where it would be expected that neighbouring points
along a path tend to lead to movements in similar direc-
tions. Λ is a diagonal matrix containing the length scale
hyper-parameters lx, ly . These dictate the rate at which the
correlation decays as a function of distance between the in-
puts, and so quantify how close two points must be to have



Figure 2. A Gaussian process based motion model. The model is
trained using trajectory data shown by solid lines. Arrows corre-
spond to the mean predicted instantaneous velocity at the position
of their tails. The background shading indicates the variance of the
prediction from each point with darker shading indicating higher
uncertainty. Axis labels are in pixels.

correlated responses. σf determines the expected range of
the output (velocities). The bias term b has the effect of cor-
relating all values to some degree, meaning that predictions
well away from the data will tend to towards the average
velocity rather than the value of m(x) (zero in this case).
Finally the noise term in equation 4 is incorporated into the
model by the addition of σ2

n along the diagonal of K. This
term allows for the variation between observed velocities
for points that are close in the input space.

As an example, we consider a subset of the trajectories
on the right hand side of Figure 1, where people enter the
scene from the bottom right, move upwards, deviate either
side of the lampposts and then continue upwards to the exit
point. The actual data used to form Dx and Dy for the GP
model is taken from the trajectories shown in Figure 2. The
mean predictions for instantaneous velocity in Figure 2 fol-
low the direction of the path even in the presence of noisy
trajectories. More importantly, the uncertainty in the pre-
dicted velocity increases further away from the observed
data. Notice also in Figure 2 how the mean predictions are
in a slightly upwards direction in these areas of high uncer-

tainty. This is due to the bias parameter b, the value of which
has been inferred, as with the rest of the hyper-parameters,
from the data.

3.1. Learning the Hyper-Parameters

Setting the values of the hyper-parameters in the covari-
ance function (equation 6) is a way of expressing some prior
information about the expected form of the motion model.
However, it would be inconvenient to have to tune these pa-
rameters by hand for each scene being modelled. Instead,
inferences about the hyper-parameters can be made from
the observed data itself. By our GP assumption, for obser-
vations f at inputs x we can express the log likelihood of
the data given the hyper-parameters as

L = log p(f |x, θ) = −1
2

log |K|− 1
2
fTK−1f−log 2π (7)

where the hyper-parameters have been collected into θ =
{σf ,Λ, σn, b}. The maximum likelihood parameters θ̂ml
can be found by optimising equation 7 with respect to θ.
This is easily performed using standard optimisation rou-
tines (we use iterative conjugate gradients) since the first
derivative of the log likelihood w.r.t. θ is easily evaluated,
see [10] for examples.

Unfortunately, L is non-convex and so there is the possi-
bility of reaching local minima corresponding to alternative
explanations of the data. For example, a rapidly varying
signal generated by a process with a small lengthscale Λ
can also be interpreted as arising from a very noisy process
with high σn. For this particular application we have ob-
served that choosing a starting point for θ, specifically σn
or Λ, close to a reasonable value is sufficient. For example,
starting with a length scale of one metre when the measure-
ment space is on the ground plane produced good estimates
for θ̂ml. This step is inevitable since we can not learn the
GP model without expressing some prior beliefs.

4. Long Term Prediction
Given a current estimate of the pdf of the target position

p(xt), an estimate for the target position at the next time
step xt+1 is

p(xt+1) =
∫
p(xt+1|xt)p(xt) dxt. (8)

The prediction model used is calculated by GP regression
as described in the previous section

p(xt+1|xt) = N (xt + GPµ,GPΣ). (9)

To obtain a long term prediction of the position, the above
integral can be evaluated recursively. However, this integral
has no analytic solution unless xt is known exactly. This
is due to the dependence of GPµ and GPΣ on xt through



400 450 500 550 600 650

50

100

150

200

250

300

350

400

450

500

Figure 3. Prediction using a GP-EKF for a target moving from
bottom right upwards. The ellipses show the 2σ bounds on the
predicted postion at successive time steps. The solid lines are a
sample from the dataset used to train the scene model and are in-
tended to show the possible paths to be taken. The dashed is a
trajectory from a test set, the starting point of which was used as
the initialisation for the prediction.

the covariance function (see equation 3). In this section,
two approximations are discussed which allow long term
prediction.

4.1. Using GP-Bayesfilters approximations

If it is assumed that p(x) is Gaussian at all time steps,
then prediction can be performed using a Kalman filter. Ko
and Fox [6] introduced the GP-EKF, an extended Kalman
filter which uses Gaussian Process based prediction and
measurement models. In the prediction step, the predicted
mean µ̂t+1 is given directly by the GP mean function

µ̂t+1 = GPµ(µ̂t, D). (10)

The additive process noise is given by the variance of the
GP prediction

Qt+1 = GPΣ(µ̂t, D). (11)

To estimate the predicted state covariance, the Jacobian of
the GP mean prediction with respect to the state is required

Gt+1 =
∂GPµ(µ̂t, D)

∂xt
, (12)

which can then be used to propagate the state covariance
through the plant model

Σ̂t+1 = Gt+1Σ̂tGTt+1 +Qt+1 (13)

Repeated application of equations 10 and 13 allows an
estimate of target postion to be calculated many time steps
into the future. Figure 3 shows the propagation of the state
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Figure 4. Distribution of particles at four snapshots in time when
starting from the estimate shown in the bottom right.

through the motion model depicted in Figure 2 with a start-
ing point in the bottom right corner. The covariance ellipses
correctly distort to express the uncertainty in target postion
caused by changes in direction of the path. However, the use
of a Gaussian state estimate is clearly too restrictive when
paths diverge and take different routes, since the unimodal
estimate can only predict one of the possible tracks after a
junction.

4.2. Sequential Monte-Carlo Prediction

The GP scene model is capable of describing complex
paths which can diverge and even reconverge, unlike other
methods which separate diverging paths into smaller ele-
ments. To use the model effectively for prediction, we must
allow a multi-modal estimate of the position to be main-
tained. We use a sampling approach where the distribution
p(xt) is represented by a set of particles. At each time step,
for each particle, the distribution is updated by sampling
p(∆xt+1|xt), provided by the GP scene model. This is
effectively the prediction step of a particle filter, with an
O(n2) operation per particle due to calculation of the vari-
ance in equation 5.

Figure 4 shows how a distribution of 250 particles evolve
over a number of time steps, starting with a Gaussian esti-
mate shown in the bottom right corner. The next distribution
shows p(x) as the target reaches the junction. In the next
step a bimodal distribution begins to form as there are two
possible hypotheses as to which route could be taken. Par-
ticles in the region between the two tracks disperse quickly
because of the high predictive uncertainty in this area where
no observations have been made. The last snapshot clearly
shows two modes to the distribution with a low probability
of the target lying between the two tracks. Notice how there
is a fairly high variance in the position of particles on the
left hand track, which is due to the variability in the time
taken by pedestrians traversing the corner. This effect is



seen again in the analysis of a more complex dataset in the
next section.

5. Implementation

The previous section used the toy example of bifurcat-
ing trajectories extracted from a larger dataset to illustrate
the potential power of the GP motion model. We now at-
tempt to model a whole dataset extracted by an overhead
camera covering a scene with many entrances and exits in
the atrium of a building. Figure 5 shows the dataset under
consideration. Since many of the paths cross in the central
area, conventional tracking methods often lose targets when
many actors are present. Long term prediction can therefore
be used to aid in target reacquisition.

Firstly, the trajectories are grouped by start point using a
simple mean shift clustering method[3], leading to the clus-
ter assignment shown in Figure 5. The reason for clustering
by start point is that the current GP model can only give
a unimodal estimate for p(xt+1|xt) (see equation 3), and
so can not model crossing trajectories. Clustering by start
point exploits the fact that people tend not to walk back on
themselves to provide a fairly general model, without intro-
ducing the problem of multi-modalities in predictions from
a single point.

The trajectories are then subsampled such that position
measurements at around 4Hz are used for the GP training
data. This is to limit the number of data points used for
prediction to around 1000, otherwise calculation of the pre-
dictive variance, which has complexity O(n2) in the num-
ber of data points, becomes computationally too expensive.
For long term prediction this is not an issue since much of
the discarded data provides little extra useful information.
It is much more useful to have a larger sample of trajec-
tories, rather than more points per trajectory, to cover the
data space as well as possible with a representative set of
common paths.

The hyper-parameters for each cluster are then learned
from the corresponding data sets. Following this, the model
is ready to be used for prediction. As an example, consider
a target which has been observed entering the scene on the
left hand side of figure 5. The GP motion model for this
cluster of trajectories is shown in Figure 6(a), and long term
prediction with 250 particles is shown in figure 6(b). Notice
how the distribution spreads to cover all three possibilities.
The sharp left corner has the effect of spreading the estimate
along the direction of the path due to differences in the time
taken for targets to traverse the corner in the observed data.
Although there are some particles in the area to the right
of the corner, these are actually fairly sparsely distributed
compared to the areas around the modes.

Figure 5. Trajectories observed from a camera over a period of a
few hours. The colours of tracks (best seen in the online version)
indicate a cluster assignment based on starting point.

5.1. On-line Adaptation

At present each model can only store a few thousand data
points due to the quadratic complexity in sampling the long
term predictions. By only using the most recently acquired
trajectories as a prediction dataset, the model can adapt to
changes in the environment. Re-clustering is inexpensive
and so can be carried out online while the recomputation
of K−1 in equation 3 requires one O(n3) operation when
the dataset changes. The re-learning of hyper-parameters
is slower, requiring recomputation of K−1 at each optimi-
sation step and is more suited to batch processing offline.
This is not a problem, since we would not expect the gen-
eral properties of the trajectories controlled by the hyper-
parameters to change for a given scene. However, actual
deviations in routes which are be subject to change can be
handled by simply updating the data stored for use in the
prediction model.

6. Evaluation
To evalutate the accuracy of the long term predictions

made via the Monte Carlo sampling method, we performed
leave-one-out cross-validation. For each of the 54 trajecto-
ries in the training set shown in Figure 6(a) a motion model
is trained, excluding a trajectory from the training set. Long
term prediction with 250 particles is used to predict the path
after the t = 5 point along this trajectory. The observation
space is divided into a grid of 0.5m2 cells. At each step
N of prediction the fraction of particles residing in the cor-
rect cell is recorded. A standard constant velocity model
Kalman filter, with the same parameters as used for col-
lecting the trajectory data, is also left to perform open loop
predicition. The predicted state estimate is integrated over
the correct cell for direct comparison with the correct parti-
cle fraction.



(a) Motion model for 54 trajectories starting on
the left of figure 5. As in Figure 2, note how the
bias b in eqn 6 lets distant points assume non-
zero velocities.
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(b) Long term prediction showing the particle
distribution estimate of p(xt) for three snap
shots.
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(c) Comparison of long term prediction perfor-
mance of the GP scene model (solid line) and
a Kalman Filter (dashed). q is the cumulative
distribution over the correct cell where the target
actually resides, and the value shown is averaged
over all trials.

Figure 6(c) shows the average value of the probability
of being correct over all the trials. The Kalman filter pre-
dictions quickly become too vague as the prediction covari-
ance rapidly increases without any new measurements. The
GP model makes use of the previously observed trajectories
to make a more informative prediction, leading to a higher
probability being assigned to the correct cell. Even after
30 time steps (7.5s), on average 10% of particles still lie
within the correct cell. However, the Kalman filter estimate
becomes less informative than a uniform distribution over
the area under surveillance.

7. Conclusion and Future Work

We have presented a novel method for modelling com-
mon pedestrian motions through a scene and, using two dif-
ferent datasets, have given examples of how the model can
be used to perform long term target position prediction. The
key benefit comes through the use of Gaussian processes
to explicitly model uncertainty in predictions such that the
characteristic unpredictability in human motion can be ac-
curately represented.

In future work we aim to use this prediction model di-
rectly to aid in planning a target re-acquisition strategy for
a single active (pan, tilt, zoom) camera. It has been noted
that each model is limited by the complexity of GP regres-
sion to contain only a few thousand data points. We are
currently investigating the use of both global [9] and local
[11] sparse approximations to allow the use of trajectory
data over longer periods. Also, at present outliers (such as
a trajectory going in the opposite direction to the others in
a cluster) cause large errors in prediction and can confuse
hyper-parameter learning. These can be avoided by using
more advanced clustering algorithms, however it would also
be interesting to compute an estimate of the joint distribu-
tion p(x,∆x) (i.e. incorporate velocity information into the
inputs), which should alleviate the crossing paths problem,
and then perform clustering over this space.
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